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Abstract. The equilibrium properties of the order–disorder transition in Cu3Au have been
studied using a density functional approach. A lattice analogue of density functional theory
is employed with a mean-spherical approximation and nearest-neighbour pair and three-body
potentials. We obtain surface transition and segregation similar to the experimental results for a
range of parameters. A continuous surface transition occurs due to a smaller number of surface
neighbours or weaker surface interactions than bulk ones. Surface segregation results from the
different interaction potentials for different species. Our density functional approach is compared
to a simple mean-field approach. The interesting dynamics of the transition may be studied in
the future on the basis of our results.

1. Introduction

Cu3Au is a classic example of a binary system that exhibits a first-order order–disorder
transition. It has a face-centred cubic lattice composed of four simple cubic sublattices
(see figure 1(a)). In the perfectly ordered phase, one of the four sublattices is occupied by
gold atoms and the other three by copper (see figure 1(b)). In the disordered state, gold
and copper atoms are randomly distributed over the lattice sites. Cu3Au is ordered at low
temperature, and abruptly disorders at the transition temperature (663 K). However, short-
range order persists above the transition temperature, and can be described by correlation
functions. The equilibrium bulk order parameter has been measured [1, 2], and the ordering
kinetics, such as nucleated and continuous ordering [3] or the scaling properties of late-stage
ordering [4], has been studied.

The surface properties of this alloy have also been investigated using surface-sensitive
techniques such as LEED [5, 6], low-energy ion scattering (LEIS) [7], x-ray scattering [8, 9],
and helium-atom scattering [10]. In the [001] direction, which we focus on in this study,
there are two kinds of alternating plane. In the ordered state, one kind of plane consists of a
Cu sublattice and a Au sublattice (a Cu–Au layer), and the other planes of two Cu sublattices
(Cu layers) as in figure 1(b). It is known that the outermost (001) surface in Cu3Au is a Cu–
Au layer. It has been found that this surface undergoes a second-order transition whereas
the bulk transition is first order, and that gold atoms segregate at the surface over a large
temperature range above the transition temperature. Some experimental results are shown
in figure 2. Evolution of surface order with time upon quenching the sample has also been
studied.

Various theories such as Landau theory [11], mean-field theory [12, 13], Monte Carlo
calculations [5, 14], and the cluster variation method [15] have been applied to the order–
disorder transition problem. Landau theory uses a polynomial expansion for the free energy
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(a)

(b)

Figure 1. (a) A unit cell of an fcc lattice. The labels in the circles denote four sublattices. (b)
Ordered Cu3Au with a (001) surface. Black circles denote Au sites and white circles Cu sites.
The top layer is the (001) surface.

which is simple, but does not include atomic details of a real system. The other theories
begin with more realistic systems, but are more complex.

In this paper, we apply the lattice analogue of density functional theory, developed
by Dieterich and co-workers [16], to the two-component system Cu3Au. We calculate the
equilibrium order parameter and composition profiles for a system with a (001) surface. In
our density functional approach, the free energy is calculated from the interaction potentials
and the lattice structure, but the calculation is relatively simple, so the theory can easily be
extended to a study of dynamics, just as continuous density functional theories have been
applied to the dynamics of liquid–crystal and gas–liquid transitions. Interesting problems
such as whether ordering or disordering begin in the bulk or at the surface and how the
velocity of growth of one phase in the other phase changes with temperature can be studied
using our results as a starting point.

The outline of this paper is as follows. In section 2 the lattice analogue of density
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Figure 2. Experimental and calculated results from reference [15]: triangles, the long-range-
order parameter in the bulk [2]; open and closed circles, the surface long-range-order parameter,
from [5] and [6]; crosses, the Au concentration [7]; full lines, from the calculation using the
cluster variation method [15].

functional theory (DFT) is reviewed, and in section 3 the direct correlation functions which
are inputs in DFT are obtained. Sections 4 and 5 present the results for the bulk and surface
transitions. In section 6 DFT is compared to a simple mean-field theory. Section 7 shows
the results obtained using the potential parameters from a bond-order simulation (BOS)
model. Section 8 gives conclusions.

2. The lattice analogue of density functional theory

In the lattice analogue of density functional theory, the grand canonical potential� is a
function of the occupation probabilities of the lattice sites, just as� is a functional of the
density in the continuous case [17]. For a two-component system,

�({nc
i , n

g

i }) =
∑

i

(εc
i n

c
i + ε

g

i n
g

i )+ F({nc
i , n

g

i })−
∑
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(µcnc
i + µgn

g

i ) (1)

where subscripts denote lattice sites,i, j , . . . , and superscripts denote the kind of atom that
occupies each lattice site,c for copper andg for gold for a Cu3Au system. For example,
nc

i is the probability that a copper atom occupies sitei. εν
i are external potentials andµν

are chemical potentials of speciesν.
� is minimized by a set of equilibrium occupation probabilities:
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i
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whereν = c or g. The free energyF in equation (1) can be written as a sum of an ideal
free energy and an excess free energy:

F = Fid + Fexc
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We approximateFexc by expanding it around a reference state and truncating at second or
third order. The third-order terms can be included approximately. By choosing a disordered
state as a reference state, we obtain

Fexc = Fexc,ref − β−1
∑
ν=c,g

∑
i

cν
1 1nν

i −
β−1

2!

∑
ν,µ=c,g

∑
i,j

c
νµ

2 (i, j) 1nν
i 1n

µ

j

− β−1

3!

∑
ν,µ,λ=c,g

∑
i,j,k

c
νµλ

3 (i, j, k) 1nν
i 1n

µ

j 1nλ
k (4)

where1nν
i = nν

i − nν , andnc and ng without subscripts are the occupation probabilities
for the disordered state. The one-, two-, and three-particle direct correlation functions for
the reference statecν

1, c
νµ

2 (i, j), andc
νµλ

3 (i, j, k) are derivatives of the excess free energy
evaluated at the reference state:
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(5)

cν
1(i) are site independent, so the argument ‘i’ is omitted.

The direct correlation functionscνµ

2 (i, j) can be shown to be related to the pair
correlation functionsgνµ(i, j) via the lattice analogue of the Ornstein–Zernike equation:

gνµ(i, j)− 1= Cνµ(i, j)+
∑
λ=c,g

∑
k

nλ
kC

νλ(i, k)[gλµ(k, j)− 1] (6)

with

Cνµ(i, j) = c
νµ

2 (i, j)− δij

1− nc
i − n

g

i

. (7)

The termδij /(1− nc
i − n

g

i ) arises from the fact that a hard-core repulsion is taken into
account from the outset in the lattice model.

In the limit where the vacancy probabilities(1− nc
i − n

g

i ) are assumed to be zero, the
above formalism for a two-component system reduces to that for a one-component system.
The limit must be taken carefully, to cancel out infinities such as would appear in the second
term of equation (7). For a bulk system,

� = β−1
∑
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whereA(2)(i, j) andA(3)(i, j, k) are effective pair and three-body direct correlation functions
for the effective one-component system:

A(2)(i, j) = ccc
2 (i, j)+ c

gg

2 (i, j)− 2c
cg

2 (i, j)

A(3)(i, j, k) = cccc
3 (i, j, k)− 3c

ccg

3 (i, j, k)+ 3c
cgg

3 (i, j, k)− c
ggg

3 (i, j, k).
(9)
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The term(βµc+cc
1−βµg−c

g

1) in equation (8) can be expressed in terms of the occupation
numbers of the reference state using the fact that the disordered state corresponds to a local
or global minimum in the grand canonical potential surface, which is true above the lower
spinodal temperature:

(βµc + cc
1− βµg − c

g

1) = ln(nc/ng). (10)

Formal solutions for the equilibrium occupation numbers are obtained using equations (2),
(8), and (10):

nc
i =

[
1+ ng

nc
exp

{
−

∑
j

A(2)(i, j) 1nc
j −

1

2

∑
j,k

A(3)(i, j, k) 1nc
j 1nc

k

}]−1

n
g

i = 1− nc
i .

(11)

The direct correlation functions are evaluated using a mean-spherical approximation
(MSA) with the use of a nearest-neighbour interaction model. The inputs to our approach
are then the properties of the disordered state (occupation probabilities and interaction
potentials), and the outputs are properties of the transition such as the bulk and surface
transition temperature, occupation probabilities for the ordered states, and surface profiles
and free energies.

3. Direct correlation functions

A mean-spherical approximation is used to calculate the direct correlation functionsc
νµ

2 (i, j)

and c
νµλ

3 (i, j, k) for the disordered state from the interaction potentials. It corresponds to
replacing the direct correlation function by its asymptotic form. When only pair interactions
are considered,

c
νµ

2 (i, j) = −βυ
νµ

2 (i, j) i 6= j

gνµ(i, i) = 0.
(12)

With the nearest-neighbour potential model,

c
νµ

2 (i, j) = −βυνµ |ri − rj | = rNN

c
νµ

2 (i, j) = 0 |ri − rj | > rNN

(13)

whererNN is the nearest-neighbour distance andυνµ are the pair potentials between species
ν and µ at that distance. Thecνµ

2 (i, i) are calculated using the above conditions and the
Ornstein–Zernike equation analogue, equation (7). As a result, the direct correlation function
A(2)(i, j) in equation (9) is expressed as follows:

A(2)(i, j) ≡ A(2)(1) = ccc
2 (1)+ c

gg

2 (1)− 2c
cg

2 (1) = −βV (2) |ri − rj | = rNN (14)

with

V (2) = υcc + υgg − 2υcg. (15)

A(2)(i, i) is calculated from equation (7) by settingi = j and taking a linear combination
of the four equations withν, µ = c or g:

A(2)(i, i) ≡ A(2)(0) = ccc
2 (0)+ c

gg

2 (0)− 2c
cg

2 (0) = −12
nc

1− nc
hcc(1)A(2)(1) (16)

where hcc(i, j) = gcc(i, j) − 1, and the argument ‘1’ is used if the lattice sitesi and
j are nearest neighbours, and ‘0’ ifi = j . Note that the termδij /(1− nc

i − n
g

i ) is
cancelled out by the linear combination.hcg(1), hgc(1), and hgg(1) are eliminated using
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nchνc(i, j) + nghνg(i, j) = 0 andhcg(i, j) = hgc(i, j) in deriving equation (16).hcc(1)

is obtained from Fourier transformation of the Ornstein–Zernike equation analogue for a
two-component system, solving the linear equations and taking the zero-vacancy limit:

hcc(k) = −1+ (1− nc)A(2)(k)

1− nc(1− nc)A(2)(k)
. (17)

The above equations (16) and (17) are solved iteratively to get self-consistent values of
A(2)(0).

When three-body interactions are included, the two-body direct correlation functions
are still assumed to be given by equation (16). Equation (13) is extended to the three-body
correlation functions such thatcνµλ

3 (i, j, k) = −βυ
νµλ

3 (i, j, k) if i, j , andk are all nearest
neighbours.cνµλ

3 (i, i, j) and c
νµλ

3 (i, i, i) are assumed to be zero, which corresponds to a
simple mean-field approach (see section 6). Then,

A(3)(i, j, k) ≡ A(3)(1) = −βV (3) if i, j, k are NN

A(3)(i, j, k) = 0 otherwise
(18)

with

V (3) = υccc − 3υccg + 3υcgg − υggg. (19)

4. Bulk transition

We now apply the density functional theory with the direct correlation functions from section
3 to the bulk transition of Cu3Au.

From equation (11), the occupation probabilities in the ordered state are expressed as
follows:

nc
i =

[
1+ ng

nc
exp(−βεc

i )

]−1

where

βεc
c = A(2)(0) 1nc

c + A(2)(1)(41nc
g + 81nc

c)+ 8A(3)(1)(21nc
g 1nc

c +1nc
c 1nc

c)

βεc
g = A(2)(0) 1nc

g + 12A(2)(1) 1nc
c + 24A(3)(1) 1nc

c1nc
c.

(20)

εc
i are effective external potentials due to the interparticle interactions. Note that there are

two kinds of distinctive site in the ordered states: copper (i = c) and gold (i = g).
Equilibrium occupation probabilities and the free energy� are calculated as functions

of A(2)(1), which is proportional to the inverse of the absolute temperature in the MSA.
The occupation probabilities are obtained numerically by an iterative procedure using

(nν
λ)i+1 = (nν

λ)i − d
∂�

∂nν
λ

∣∣∣∣
{nν

λ}i
(21)

whered is chosen to get a fast convergence. The transition temperature is determined by
setting the values of� for the ordered and the disordered states equal.

Let us consider first the case in which the three-body potentials are set to zero. The
result obtained numerically is that the bulk undergoes a first-order transition, as can be seen
from figure 3, and the transition point is

A
(2)
tr (1) = −βtr (υ

cc + υgg − 2υcg) = −4.00. (22)

The order parameter in the figure is defined as the difference between the probability that a
Cu atom occupies a correct site (in terms of the perfectly ordered state) and the probability
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Figure 3. The bulk order parameter versuskT /V (2). The solid curve represents the pair-
interactions-only case, and the dashed curve the case with three-body interactions.

that it occupies a wrong site. For bulk, the order parameter is (nc
c − nc

g). From equation
(22), V (2) = υcc + υgg − 2υcg should be positive in order for the order–disorder transition
to occur. In other words, the average attractive interactions between like species should
be weaker than those between unlike species. The ordered state obtained by using only
two-body interactions is a little disordered even at low temperatures, because a perturbation
theory at a low order has been used.

Inclusion of three-body terms produces improved results (the dashed line in figure 3).
In this case, the transition temperature is a function of bothA(2)(1) andA(3)(1)/A(2)(1) =
V (3)/V (2). The transition temperature increases, and the ordered states become more ordered
for a givenV (2) asV (3)/V (2) increases, because the system has an additional driving force
for ordering.

5. Surface transition

The equilibrium profiles in the presence of a free surface can be obtained by minimizing�

under the following boundary conditions:

nν
λ,l −→ 0 l −→ −∞

nν
λ,l −→ nν

λ(bulk) l −→∞ (23)



94 Chaok Seok and D W Oxtoby

wherel is layer number. We consider a half-infinite system with a (001) surface. Cu–Au
layers have equal numbers of copper and gold sites, and the order parameters arenc

c,l −nc
g,l

(see figure 1(b)). Cu layers have copper sites only, and the order parameters for these
layers are not defined. We can have both kinds of surface layer as boundary conditions,
and choose the layer which gives the lower surface free energy as the equilibrium surface
layer.

A proper reference state for the surface problem is needed in the density functional
approach. The disordered bulk is used as a reference state as in the bulk transition calc-
ulations in section 5.1, and a system with a surface is used in section 5.2.

5.1. The disordered bulk reference state

The same reference state as is used in section 3 is used in this section, although the expansion
of a surface system around a bulk state may not be a good approximation.

If there exists a surface,� differs from equation (8) by a surface field and a surface
enhancement which arises formally from the correlations between the vacuum and the
surface layer:

� = β−1
∑

i

[nc
i ln nc

i + (1− nc
i ) ln(1− nc

i )] − β−1
∑

i

(ln(nc/ng)− βF(i)) 1nc
i

− β−1

2!

∑
i,j

′
(A(2)(i, j)− βI (i, j)) 1nc

i 1nc
j

− β−1

3!

∑
i,j,k

′
A(3)(i, j, k) 1nc

i 1nc
j 1nc

k (24)

where
∑′ stands for a summation overoccupiedlattice sites. The surface fieldF(i) is non-

zero (equal toF ) only if the lattice sitei is on the surface layer, and the surface interaction
I (i, j) is non-zero (defined asI ) only if i andj are nearest neighbours both on the surface
layer:

F = −4[nc(υcc − υcg)+ ng(υcg − υgg)]

+ 4[ncnc(υccc − υccg)+ 2ncng(υccg − υcgg)+ ngng(υcgg − υggg)] (25)

I = −2[nc(υccc − 2υccg + υcgg)+ ng(υccg − 2υcgg + υggg)]. (26)

If the surface fieldF > 0, � will be lowered by the smaller1nc
i for the sitei at the

surface, as can be seen from equation (24). As a result, gold segregates at the surface
if F > 0, and copper segregates ifF < 0. In other words, strong Cu–Cu (or Cu–Au)
interactions compared to Cu–Au (or Au–Au) interactions which makeF positive favour Au
at the surface because surface atoms have a smaller number of neighbours. If the surface
enhancementI > 0, the surface atoms have stronger effective pair interactions, and tend
to be more ordered. The opposite is true ifI < 0. Numerical calculations show that the
magnitude ofF affects the ordering of the surface to some degree, greater|F | increasing
the surface order, while the effect ofI on surface segregation is small.

With no surface field and surface enhancement the surface transition is second order
and occurs below the bulk transition temperature as in the calculations using the cluster
variation method [18]. Depending on the surface parameters, the surface transition can be
second order with varying transition temperatures, or first order with the same transition
point as the bulk. If only pair interactions are included,F/V (2) is the only parameter. If
it is varied to give a second-order surface transition near the bulk transition temperature,
very little Au segregation occurs, and the surface order parameter is much smaller than the
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Figure 4. The density functional calculation results with a bulk reference for the bulk and
surface transition for a system withV (3)/V (2) = 0.3, F/V (2) = 0.9, andI/V (2) = −0.0805.

bulk value. The poor results on the surface problem without three-body interactions are not
surprising in view of the bulk transition results in section 3. When three-body interactions
are included, a surface transition and surface segregation similar to the experimental results
can be obtained ifF is large enough to give surface Au segregation, andI is varied to have
the same bulk and surface transition temperature. An example is shown in figure 4 for a
set of parameters that gives surface segregation of Au and a surface transition near the bulk
transition temperature. The overall agreement with the experimental data in figure 2 is good,
although the surface order parameter does not approach the bulk rapidly enough at lowT .
The surface segregation profiles in figure 5 show exponential decays of the segregation with
layer number above the transition temperatures as in reference [9]. Although the amplitude
of the calculated profile is smaller than the experimental data for the particular choice of
the parameters, the shape and the range of the oscillation are similar. The surface order
parameter profiles are shown in figure 6.

5.2. The reference state with a surface

A half-infinite system which is completely disordered, and has constant layer composition
(nc for all layers= 0.75) is chosen as an alternative reference state for the surface problem.
In this case, the term(βµc + cc

1(i) − βµg − c
g

1(i)) and A(2)(0) depend on layer number
since the translational symmetry is broken in the direction perpendicular to the surface. We
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Figure 5. The surface segregation profile atA(2)(1) = −1.98 (the solid line), which is just
above the transition temperatureA

(2)
tr (1) = −1.9801, is compared to the experimental data for

Ttr + 1 K from reference [9] (the dashed line). The potential parameters used in the calculation
are the same as in figure 4.

assume that only surface pair interactions are different from bulk.
Because the half-infinite system with constant layer composition is not generally an

extremum of�, equation (2) cannot be used for this reference state. We write the term
(βµc + cc

1(i)− βµg − c
g

1(i)) as follows:

(βµc + cc
1(i)− βµg − c

g

1(i)) = (βµc + cc
1− βµg − c

g

1)bulk

+ (cc
1(i)− c

g

1(i))− (cc
1− c

g

1)bulk = ln(nc/ng)− βF ′(i) (27)

where equation (10) and the definition−βF ′(i) = (cc
1(i)− c

g

1(i))− (cc
1 − c

g

1)bulk are used.
cν

1(i) can be calculated by expanding it around a reference state. If the bulk disordered state
is used as the reference,F ′(i) is the same asF in subsection 5.1 where the bulk reference
is used from the outset. In this subsection the following trick is used: get two equations by
expandingcν

1,vacuum around a bulk and a half-infinite system, and eliminatecν
1,vacuum to get

relations betweencν
1,half -inf inite(i) andcν

1,bulk. As a result,F ′(i) is expressed as follows:

−βF ′(i) = −nc{ccc
∞(0)− ccg

∞(0)} − ng{ccg
∞(0)− cgg

∞ (0)}
+ nc{ccc

0 (0)− c
cg

0 (0)} + ng{ccg

0 (0)− c
gg

0 (0)}
− 4[2nc{ccc

2 (1)− c
cg

2 (1)} + 2ng{ccg

2 (1)− c
gg

2 (1)}
− nc{ccc

2,surf (1)− c
cg

2,surf (1)} − ng{ccg

2,surf (1)− c
gg

2,surf (1)}]
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Figure 6. Surface order parameter profiles at temperatures below the transition temperature

A
(2)
tr (1) = −1.9801. The potential parameters used are the same as in figure 4.

+ 12[ncnc{cccc
3 (1)− c

ccg

3 (1)} + 2ncng{cccg

3 (1)− c
cgg

3 (1)}
+ ngng{ccgg

3 (1)− c
ggg

3 (1)}] (28)

for the sitei at the surface. Ifi is at thelth layer, then

−βF ′(i) = −nc{ccc
∞(0)− ccg

∞(0)} − ng{ccg
∞(0)− cgg

∞ (0)}
+nc{ccc

l (0)− c
cg

l (0)} + ng{ccg

l (0)− c
gg

l (0)}. (29)

Note that thecνµ

2 (0) are layer dependent, and so are represented byc
νµ

l (0) where l is the
layer number, andl = 0 andl = ∞ denote the surface layer and the bulk.F ′(i) is different
from F in equation (25) in that it includes the contribution from the surface interactions
andc

νµ

2 (0), and is not zero for layers other than the surface.
The bulk and layercνc

2 (0)− c
νg

2 (0) or A(2)(0) are calculated by similar analysis to that
in section 3 as follows:

cνc
∞(0)− cνg

∞(0) = −12
nc

1− nc
{cνc

2 (1)− c
νg

2 (1)}hcc(1) (30)

cνc
l (0)− c

νg

l (0) = −4
nc

1− nc
[{cνc

l,l (1)− c
νg

l,l (1)}hcc
l,l(1)

+ (1− δl,0){cνc
l,l−1(1)− c

νg

l,l−1(1)}hcc
l,l−1(1)

+ {cνc
l,l+1(1)− c

νg

l,l+1(1)}hcc
l,l+1(1)] (31)
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A
(2)
l (0) = −4

nc

1− nc
[A(2)

l,l (1)hcc
l,l(1)+ (1− δl,0)A

(2)

l,l−1(1)hcc
l,l−1(1)+ A

(2)

l,l+1(1)hcc
l,l+1(1)]

(32)

wherec
νµ

l,l′(1) and hcc
l,l′(1) are correlation functions between two atoms in layersl and l′.

The hcc
l,l′(1) are obtained from the layer-dependenthcc

l (k):

hcc
l (k) = [1− nc(1− nc){A(2)

l (0)+ A
(2)
l,l (1)fxy(k)}]−1

× [−1+ (1− nc){A(2)
l (0)+ A

(2)
l,l (1)fxy(k)

+ A
(2)

l,l−1(1)f−z(k)(1+ (1− δl,0)n
chcc

l−1(k))

+ A
(2)

l,l+1(1)f+z(k)(1+ nchcc
l+1(k))}] (33)

where

fxy(k) = 4 cos(kxa/2) cos(kya/2)

f−z(k) = 2e−ikza/2{cos(kxa/2) cos(kya/2)}
f+z(k) = 2eikza/2{cos(kxa/2) cos(kya/2)}.

The case where only the surface correlation functionA
(2)

0,0(1) = −βV
(2)
surf is different from

the bulk correlation functionA(2)(1) = −βV (2) is considered.
Gold segregation is obtained ifF ′ at the surface is positive as in the previous subsection.

The surface term inF ′ is positive if the surface Au–Au (Cu–Au) interaction is stronger than
the Cu–Au (Cu–Cu) interaction. IfF ′ is large enough to give significant Au segregation,
V

(2)
surf should be smaller thanV (2) in order to give a second-order surface transition. We

find similar results on surface transition, surface segregation and order parameter profiles
to those in figures 4, 5 and 6.

6. A simple mean-field approach

The density functional approach presented in sections 4 and 5 is a mean-field approach in the
sense that it does not allow fluctuations, but it is more sophisticated than usual mean-field
approaches. Here we compare the density functional approach with a simple mean-field
approach.

The grand canonical potential� can be written as follows within a mean-field
approximation:

�MF = β−1
∑

i

[nc
i ln nc

i + n
g

i ln n
g

i + (1− nc
i − n

g

i ) ln(1− nc
i − n

g

i )] −
∑
ν=c,g

∑
i

µνnν
i

+ 1

2!

∑
ν,µ=c,g

∑
i,j

υνµ(i, j)nν
i n

µ

j +
1

3!

∑
ν,µ,λ=c,g

∑
i,j,k

υνµλ(i, j, k)nν
i n

µ

j nλ
k (34)

where the configurational entropy for the non-interacting system and the assumption

gνµ(i, j) = g
νµλ

3 (i, j, k) = 1 (35)

are employed. The chemical potentials can be obtained by using equation (2) for the
disordered state:

µc − µg = β−1 ln(nc/ng)+ 12nc(υcc − υcg)+ 12ng(υcg − υgg)

+ 24ncnc(υccc − υccg)+ 48ncng(υccg − υcgg)+ 24ngng(υcgg − υggg)

(36)
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where the nearest-neighbour pair and three-body interaction model is used as in the above
density functional approach.

�MF can be compared to�DF by expanding1nν
i in �DF . The following correspond-

ences are found for the correlation functions in�DF and the potential parameters in�MF :

c
νµ

2 (1)− 4ncc
νµc

3 (1)− 4ngc
νµg

3 (1)←→−βυνµ

c
νµ

2 (0)←→ 0

c
νµλ

3 (1)←→−βυνµλ.

(37)

Note thatcνµ

2 (0) = 0 corresponds to the assumption in equation (35) (see equation (16)).
For a system with a surface,�DF with the bulk reference state reduces to�MF with

equation (37).�DF with a surface reference reduces to�MF with equation (37) and the
following:

c
νµ

2,surf (1)− 2ncc
νµc

3 (1)− 2ngc
νµg

3 (1)←→−βυ
νµ

surf . (38)

Equation (38) is different from the first line in equation (37) because there are two lattice
sites with which a given nearest-neighbour (NN) pair makes NN triple whereas there are
four for a bulk pair.

If only pair interactions are considered,�MF is the same as�DF within the MSA
exceptA(2)(0). The bulk transition temperature is

−βtr (υ
cc + υgg − 2υcg) = −1.21 (39)

which is higher than that from the density functional calculation. When the second-order
surface transition occurs at the bulk transition temperature, there is almost no surface
segregation above the transition temperature, and the bulk transition curve shows large
curvature near the transition temperature.

When three-body interactions are included, the notationV
(2)
MF , V

(3)
MF , FMF , and IMF

together with equation (37) are used. For example,

V
(2)
MF = (υcc + υgg − 2υcg)+ 4nc(υccc + υcgg − 2υccg)+ 4ng(υccg + υggg − 2υcgg).

(40)

Those parameters have similar effects on the surface transition to those in the density
functional case. When the second-order surface transition occurs at the bulk transition
temperature, the transition curves are similar to those in figure 4, but the bulk order parameter
is somewhat too small at the transition temperature relative to experiment.

7. Potentials from the BOS model

In this section, we use the interaction potentials obtained from the parameters in the
bond-order simulation (BOS) model [19] to study bulk and surface transitions. The
BOS parameters have been determined from the mixing energies for bimetallic systems
of different compositions, and used to predict the structures of bimetallic clusters.

In the BOS model, the site energy for an A-type atom surrounded byM of B type is
expressed as

εA
Z,M of B = εA

Z +M 1EA
Z,A−B +

M(M − 1)

2
λA

Z,A−B (41)

and likewise for the site energy for a B-type atom.Z is the number of neighbours around
a given atom,εA

Z = εA
Z,M=0, and1EA

Z,A−B is the bond-change energy when one of theZ

neighbours of atom A is replaced by a B atom. The first bond change1EA
Z,A−B is constant,



100 Chaok Seok and D W Oxtoby

but the subsequent bond-change energies are different due to the many-body effect, and are
included in the third term of the right-hand side of equation (41).

The bulk potential parameters that we need are extracted from the following relations,
which can be derived by considering the changes in the numbers and kinds of pair and
three-body interactions when one of the surrounding atoms is replaced by the other type:

εc
12/12= (1/2)(υcc)+ (n/6)(υccc)

ε
g

12/12= (1/2)(υgg)+ (n/6)(υggg)

1Ec
12 = (1/2)(υcg − υcc)+ (n/3)(υccg − υccc)

1E
g

12 = (1/2)(υcg − υgg)+ (n/3)(υcgg − υggg)

11λc
12 = −(n/3)(υccg − υccc)+ (n/3)(υcgg − υccg)

11λg

12 = −(n/3)(υcgg − υggg)+ (n/3)(υccg − υcgg)

(42)

wheren is the number of triples including a given central atom which are changed by the
replacement of one of the atoms surrounding the central one by the other type, and is equal
to 4 for an fcc lattice.

The surface interaction potentials are obtained from the following equations. We use

1Ec
8 = (1/4)(υ

cg

surf − υcc
surf )+ (1/4)(υcg − υcc)+ (n/4)(υccg − υccc)

1E
g

8 = (1/4)(υ
cg

surf − υ
gg

surf )+ (1/4)(υcg − υgg)+ (n/4)(υcgg − υggg)

1Ec
8 +1E

g

8 = 1Ec
12+1E

g

12.

(43)

to getV (2)
surf , and

εc
8/4= (1/2)(υcc

surf )+ (1/2)(υcc)+ (3n/12)(υccc)

ε
g

8/4= (1/2)(υ
gg

surf )+ (1/2)(υgg)+ (3n/12)(υggg)
(44)

to getυcc
surf − υ

gg

surf .
Three sets of BOS parameters from the experimental data at (a) 800 K and (b) 298 K, and

from (c) a quantum chemical density functional calculation [20] are used to get the potential
parameters. Those parameters are shown in table 1. The bulk transition temperatures
calculated are (a) 124 K, (b) 655 K, and (c) 609 K. Note that the second is only 1.2%
away from the experimental value, 663 K. The surface transitions obtained are different
from the experimental results in figure 2, however. More ordered surfaces compared to the
experimental results are obtained when either the bulk reference or the surface reference
state are used. The most important discrepancy with experiment is that Cu segregates at
the surface in either case because of the large negative surface fieldF or F ′. The simple
mean-field calculation of section 6 gives bulk transition temperatures around 370 K for all
three sets of data, and Cu segregation.

8. Conclusions

The equilibrium properties of the order–disorder transition in Cu3Au with a (001) surface
have been studied using a lattice version of density functional theory. A continuous surface
transition and oscillating surface segregation profiles are obtained for a range of potential
parameters, and the general shapes agree with experiment.

It is appropriate to compare the density functional approach to other theoretical methods.
First, our approach can be reduced to a simple Landau theory by expanding the free energy as
a power series in the order parameter, truncated at low order; this is unlikely to be correct
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Table 1. The BOS parameters and the potential parameters.

Input to BOS 800 K 298 K DFT

εc
12 (eV) −3.49 −3.49 −3.49

ε
g

12 (eV) −3.81 −3.81 −3.81

1Ec
12,c−g (kJ mol−1) −2.02 −0.64 −0.74

1Ec
12,c−g (kJ mol−1) 0.56 1.93 1.84

λc
12,c−g (kJ mol−1) 0.08 −0.42 −0.39

λ
g

12,c−g (kJ mol−1) −0.02 −0.52 −0.48

V (2) (kJ mol−1)a 1.60 18.1 16.9

V (3)/V (2)a 0.516 0.0456 0.0438

F/V (2)b −11.2 −2.37 −2.38

I/V (2)b −0.567 0.406 0.402

F ′surf /V (2)c −9.80 −3.43 −3.34

V
(2)
surf /V (2)c 1.40 0.429 0.435

V
(2)
MF (kJ mol−1)d 3.42 3.42 3.33

V
(3)
MF /V

(2)
MF

d 0.242 0.242 0.223

FMF /V
(2)
MF

d −0.367 −1.17 −1.15

IMF /V
(2)
MF

d −0.266 2.15 2.05

a Used in the calculation of sections 5.1 and 5.2.
b Section 5.1.
c Section 5.2.
d Section 6.

near a first-order transition, however, and the continuum square-gradient approximation
employed for an inhomogeneous system with a free surface will not be a good approximation
to the actual lattice system except near a second-order transition where the order parameter
changes slowly in space.

Second, we can compare our method with what we refer to as ‘simple mean-field’
theory in section 6 above. Our theory corresponds in structure to that approach, but is
more accurate in predicting the transition temperature. It is also more flexible for future
applications, as it is straightforward to generalize the mean-spherical approximation used
here to a more sophisticated closure. One key question is that of why our theory (as well
as the simple mean-field theory) give preferential copper segregation at the surface instead
of gold, as is seen in experiment. Although we cannot prove that this is the case, we feel
that the parameters of the BOS model, which are fitted to bulk heat of mixing data for the
alloys, do not properly describe the nature of the surface, and that the problem therefore
lies in the potential rather than in the theoretical approach. This hypothesis could be tested
by Monte Carlo simulations of half-infinite systems using the BOS model.

Finally, one can compare our approach to other theoretical methods such as Monte
Carlo simulations and the cluster variation method. These calculations are lengthier and
less transparent physically. It is also not clear how to extend them to dynamical problems.
We are currently using density functional theory to study bulk and surface nucleation in the
Cu3Au system using the equilibrium profiles obtained in this study as boundary conditions.

In view of the importance of three-body terms in our calculation, one might ask whether
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four-body and higher terms also matter; that is, the expansion might be slowly convergent.
In our view, the three-body terms provide the essential physical content as reflected in
the statement that the interaction between two copper atoms, for example, is different at
a surface, surrounded by other copper atoms, or surrounded by gold atoms. A three-body
potential allows for this effect, while a four-body term would provide just a higher-order
and less physically motivated correction. In order to go beyond the present approach, it
would be necessary to use a still more sophisticated density functional theory based on a
density- or occupation-dependent potential from quantum mechanical theories.
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[15] Sanchez J M and Ḿoran-Ĺopez J L 1985Surf. Sci.157 L297
[16] Nieswand M, Dieterich W and Majhofer A 1993Phys. Rev.E 47 718

Nieswand M, Majhofer A and Dieterich W 1993Phys. Rev.E 48 2521
[17] Oxtoby D W 1990 Crystallization of liquids; a density functional approachLiquids, Freezing and Glass

Transition (Elsevier: Amsterdam)
[18] An G and Schick M 1988J. Phys. A: Math. Gen.21 L213
[19] Zhu L and DePristo A E 1995J. Chem. Phys.102 5342

Zhu L and DePristo A E 1997J. Catal. to be published
[20] DePristo A E 1995 private communication


